lunes, 6 de febrero de 2012

Demostración derivada tg x

y = tg x

y = (sen x)/ (cos x)

ln y = ln [(sen x)/ (cos x)] = ln (sen x) – ln (cos x)

y’/ y = x’ [(cos x)/ (sen x)] – x’ [(-sen x)/ (cos x)]

y’/ y = x’ [(cos x)/ (sen x)] + x’ [(sen x)/ (cos x)]

y’/ y = x’ [(cos2x + sen2x)/ (sen x · cos x)]

y’ = yx’ [(cos2x + sen2x)/ (sen x · cos x)]

y’ = x’ [(sen x)/ (cos x)] [(cos2x + sen2x)/ (sen x · cos x)]

y’ = x’ [(cos2x + sen2x)/ (cos2x)]

y’ = x’ (1 + tg2x) = x’ + x’ tg2x

No hay comentarios:

Publicar un comentario